Pre-mature Fruit Drop in Coffee – Interventions for Minimizing the Crop Losses

Evaluation of a New Method for Treating Coffee Effluent
सुरक्षित आवास, शुद्ध वातावरण
यही हमारा स्वच्छ भारत देश है
हम "स्वच्छ भारत" को
सफल बनाएं।

कॉफी बोर्ड
वाणिज्य एवं उद्योग मन्त्रालय
भारत सरकार
Contents

Coffee Times

- From the Secretary’s desk

Planters’ World

- Evaluation of a New Method for Treating Coffee Effluent
- Pre-mature Fruit Drop in Coffee - Interventions for Minimizing the Crop Losses

Coffee and Health

- Some coffee for the hair, please
- Here’s how coffee is good for digestion, other digestive disorders

Open House

- India on its way to being the next ‘big thing’ in specialty Coffee World: Sherri Johns

In the News

- Starbucks to Let You Drive Through with Your Favourite Brew
- Can coffee growers deploy MGNREGA workers?

Calendar of Coffee Estate Operations

- July, August and September

Market Watch / वाजार पर एक नज़र

- June 2020
- June 2020

Letters to the Editor

Your views, opinions & observations are welcome as long as it is in the spirit of the magazine’s principles and values, and may be sent to: editor.indiancoffee1@gmail.com

The publisher reserves the right to respond/publish the same in this magazine.
Coffee Board Regional Logos

Coffees of India

Anamalais™ Robusta Kaapi Royale™ Monsooned Malabar™ Mycore Nuggets™ Badbudangiris™

Coffees of India

Coffees of India
The traditional coffee growing areas have witnessed erratic rainfall distribution patterns during the S-W monsoon season for the past consecutive years with unusually heavy rains during first fortnight of August. The incessant rainfall caused erosion of top soil, landslides, flooding and water logging in the root zone causing wet feet condition. Soil saturation coupled with cool ambient temperature and high relative humidity provide ideal conditions for flare up of rot diseases such as stalk rot, black rot and leaf spot diseases causing defoliation and premature fruit drop, affecting crop production to a great extent. In the backdrop of the deviations in weather parameters as a consequence of climate change, it becomes imperative for coffee growers to be aware of the pre-disposing factors for development of these diseases to take up pre-emptive remedial measures and identification of symptoms in the initial stage itself to control the flare ups of fungal diseases, so that the crop losses could be minimized. Our scientists at Central Coffee Research Institute have contributed an article on premature fruit drop in coffee, its causes and remedial measures for the benefit of coffee growers.

At the estate level, coffee is processed by two methods viz., wet method and dry method of processing. The wet processing system uses large volume of water and therefore generates high volume of polluted effluent containing high Biological Oxygen Demand (BOD) level. The effluent is required to be treated to meet the pollution control norms. However, the existing methods of treatment are cost prohibitive and hence there is a need to examine how best the effluent is recycled and used in coffee plantation takes into consideration all parameters of concern i.e. its effectiveness, availability, affordability and environmental friendliness. Recently, the Central Coffee Research Institute has evaluated a new treatment method namely ANSF (Acidification-Neutralization-Sedimentation-cum-Filtration) for treating the coffee effluent resulting from wet processing of coffee. A report on the trials conducted on the effectiveness of a new treatment method for treating the coffee effluent is presented in this issue for the benefit of planters.

This issue also contains regular features viz., Coffee Market Reports, Coffee & Health, Calendar of Coffee Estate Operations etc.

Hope! The readers will enjoy the reading of magazine over a cup of coffee.

N.N. Narendra
Secretary
The Ministry of Environment, Forest and Climate Change (MoEF&CC), New Delhi has recently issued a Gazette Notification prescribing standards/limits for pH and Biological Oxygen Demand (BOD) levels for the disposal of effluent resulting from wet/parchment processing (Gazette Notification No. 45 dated 24th January 2020). This Gazette Notification contains standards/limits for storing the effluent in the specified lined lagoons (for solar evaporation) and also standards/limits for discharging the treated effluent on land (for irrigation). As per this Notification, the pH of the treated effluent should be between 6.5 and 8.5. The BOD level should be 1,000 mg/L (1,000 ppm) for storing in the specified lined lagoons (for solar evaporation) and 100 mg/L (100 ppm) for discharge on land for irrigation purpose (Table 1).

Coffee processing refers to the transformation of fresh coffee cherries (fruits) into raw coffee bean (which is the major export form of coffee from the producing countries). Coffee is processed by two methods (wet and dry) in order to obtain the raw coffee bean from the fresh coffee cherries. Of these two processing methods, wet processing consumes water at different stages of processing and thus generates effluent containing high BOD level. The quantity of the effluent generation during wet processing depends on the processing methods employed. The traditional fully-washed wet method generates 40,000 – 70,000 liter of effluent per tonne of fresh cherry. While, the modern mechanical mucilage removal machines (like ecopulper) generates 1,500 to 2,000 liter of effluent per tonne of fresh cherry.

The fresh coffee effluent is acidic in nature with the pH level ranging from 4 to 5. The BOD level in the fresh effluent ranges from 4,000 to 13,000 mg/L (4,000 to 13,000 ppm) depending the processing methods employed.

Since 1978, the Central Coffee Research Institute (CCRI) has been carrying out various research programmes independently and also carried out in collaboration with the reputed national institutes like National Environmental Engineering Research Institute (NEERI, Nagpur), University of Agricultural Sciences (UAS, Bangalore), Tamil Nadu Agricultural Sciences (TNAU, Coimbatore), Application of Science & Technology for Rural Development (ASTRA – An unit of Indian Institute of Science, Bangalore) as well as private laboratory (M/s. Bass Pollution Control Systems Limited, Bangalore) with the primary objective of evolving treatment methods/techniques to bring down the pollution load to the levels/limits prescribed by the Ministry of Environment, Forest and Climate Change for the disposal of coffee effluent. These research programmes attempted various lab-scale methods/techniques (physical/chemical/biological) as well as field level trials and also conducted field trials to test the usefulness of the treated coffee effluent on various annual crops as well as coffee, for irrigation purpose. The outcome of these research programmes indicated that multi-stage treatment system is essential for

Evaluation of a New Method for Treating Coffee Effluent
(Acidification-Neutralization-Sedimentation-cum-Filtration-ANSF method)

Dr. T.N.Gopinandhan (Biochemist), Dr. J.S.Nagaraja (Divisional Head), Post-Harvest Technology Division, T.N. Sandeep (Agricultural Engineer), Dr. H. Shruthi, Research Assistant (Biochemistry), Channabasamma B. Bided, Research Assistant (Agricultural Engineer), Post-Harvest Technology Division and Dr. Y. Raghuramulu (Senior Advisor – Research & Extension), Central Coffee Research Institute, Coffee Research Station Post - 577 117, Chikkamagaluru District, Karnataka State.
treating the coffee effluent (anaerobic digestion followed by aerobic digestion and plant-based/reed-bed treatment system). The various multi-stage treatment systems evaluated under the different research programmes till date could bring down the BOD level only to the extent of 767mg/L (767 ppm).

It is pertinent to mention at this juncture that the CCRI had conducted field trials on the conjunctive use of treated coffee effluent and pond water on the performance established Robusta plants at CCRI farm during 2008 to 2010. The Robusta plants were irrigated with the diluted treated effluent having an approximate BOD level 500 mg/L (500 ppm). The data indicated that the established Robusta plot irrigated with the diluted treated effluent did not affect the yield level (1,309 kg clean coffee per ha) and it was on par with the yield level recorded in the Robusta plot irrigated with the pond water (1,310 kg clean coffee per ha). These results indicated that the treated coffee effluent with a BOD level of 500 mg/litre can very well be used for irrigating the established coffee plants (Shiva Prasad et. al. 2010).

Sand-bed filtration method:

Laboratory trials conducted during 2016-17 harvest season for the treatment of coffee effluent using sand-bed filtration method indicated that the simple sand-bed filtration method able to reduce the pollution load to a greater extent by removing the suspended and dissolved solids in the effluent. Subsequently, during 2017-18 harvest season, field trials were taken up to treat the coffee effluent following sand-bed filtration method at CCRI farm. A medium-size lagoon measuring a dimension of 5.5 x 3.8 x 3.1 feet (holds 1,800 litre of effluent) was used for the sand-bed filtration method. The bottom of the lagoon was filled with big gravel stones to half-foot height and it was topped with M-sand to two-feet height. The fresh effluent resulting from wet processing of Arabica coffee was passed into the sand-bed lagoon (approximately 1,000 litre of fresh effluent). The discharge from the sand-bed filtration was clear. However, the sand-bed filtration method could work only for two days due to choking of the sand-bed filter with the suspended solids particularly mucilage (mostly pectin substances present in the fresh effluent). The sand-bed filtration method demanded periodical removal of all the solids lodged over the sand-bed layer and thus making it more labor-intensive and also impractical for treating the coffee effluent (Fig 1 & 2).

![Fig 1. Removal of mucilage lodged on top of the sand-bed filtration pond](image1)

![Fig 2. SBF- Filtrate from sand-bed filtration; Control-Fresh effluent](image2)
Recently, the Post-Harvest Technology division of CCRI located in Chikkamagaluru district of Karnataka state has evaluated a new treatment method (Acidification-Neutralization-Sedimentation-cum-Filtration-ANSF) for treating the coffee effluent resulting from wet processing of coffee. This article presents the results of the field trials conducted on the effectiveness of a new treatment method for treating the coffee effluent during the last three harvest seasons at CCRI farm (2017-18 to 2019-2020) for the benefit of planters.

Acidification of effluent:

A review of published literature on treatment of coffee effluent indicated that acidification of fresh effluent is pre-requisite for the treatment of coffee effluent. The processed water (i.e. effluent) from the mechanical mucilage remover contains some amount of sugars. When the sugar is fermented, it is converted into ethanol and carbon-di-oxide. Subsequently, the ethanol is converted into acetic acid, which makes the effluent more acidic. Under acidic condition, the pectic substances present in the effluent comes out of the effluent (due to precipitation) and floats on the surface of the effluent. These pectic substances reacts with the calcium (or other multivalent ions) present in the effluent and forms into a non-soluble gel of calcium pectate. Therefore, when the fresh effluent is allowed to rest in a tank/lagoon for about 8 to 10 hours, all the mucilage (mostly pectin) comes out of the effluent and floats on top, which can be removed off. Removal of pectic substances from the effluent reduces the pollution load and also makes further treatment easier.

New treatment method (Acidification-Neutralization-Sedimentation-cum-Filtration):

The new treatment unit viz., Acidification-Neutralization-Sedimentation-cum-Filtration (ANSF) established at CCRI farm is shown in Fig 3 A-C. The new treatment method consists of two units of acidification tank (A1 & A2 each having a dimension of 8.8 x 3 x 4.8 LBW and holds 3,500 litre effluent) followed by a neutralization tank (9.6 x 3 x 8.8 feet LBW and holds 7,000 litre effluent) and four sedimentation tanks (S1, S2, S3 & S4 having a dimension of 6.2 x 4.9 x 4.75 feet LBW and holds 4,000 litre effluent). A perforated screen (56 x 75 inches with round holes of 8 mm diameter) was seated half foot above the floor level in the S-2 and S-3 tanks. Filter materials (gravel stones topped with M-sand) was loaded over the perforated screen to 2 feet height to filter the suspended solids (if any) and dissolved solids in the effluent. In S-1, S-2, S-3 and S-4 tanks, drains (outlet) are provided at the bottom of the sedimentation tanks to remove the sludge at periodical intervals.

![Fig 3 A. New treatment method - Acidification-Neutralization-Sedimentation-cum-Filtration (A1 & A2- Acidification tanks; N-Neutralization tank; S1 to S4 -Sedimentation tanks; S5- Storage tank)](image)

![Fig 3 B. A view of new treatment method - Acidification-Neutralization-Sedimentation-cum-Filtration](image)
was fed at the bottom of A-1 tank and stored for overnight (10-12 hours).

The thick scum (pectin) formed on the top of A-1 tank was gently raked-off using a plastic bucket and mixed with the coffee pulp. When the effluent resulted from 2nd day of pulping fed into A-1 tank, the previous day effluent from A-1 tank flew to the A-2 tank through the PVC pipe (3 inch diameter) fixed at the top of A-1 tank by simple displacement technique. Scum formation was also observed in A-2 tank and it was removed and mixed with the coffee pulp. From 3rd day of pulping onwards, the effluent from A-2 tank flew to the neutralization tank through the PVC pipe (3 inch diameter) fixed at the top of A-2 tank. In the neutralization tank, agricultural lime at the rate of 5 gram/L effluent was added. The agricultural lime was dissolved in adequate amount of water and the lime solution was added to the effluent. The neutralized effluent from the neutralization tank was top fed to the S-1 tank. The effluent from S-1 tank was bottom-fed to S-2, S-3 and S-4 tanks in series through the PVC pipe (3 inch diameter). The neutralized effluent passed through the filtering materials placed in S-2 & S-3 tanks. The treated effluent from S-4 tank passed to the settling tank (S-5) through the PVC pipe (3 inch diameter) fixed on the top of the S-4 tank.

Analysis of effluent for pollution parameters:

The fresh effluent and also the treated effluent from all tanks (A-1, A-2, N, S-1, S-2, S-3, S-4 & S-5) were sampled at regular interval and analysed for pH, BOD level & total suspended solids (TSS) content following standard analytical technique. The analytical data are presented in Table 2. The data indicated that the average pH of the fresh effluent was 4.78 and it decreased to 4 to 4.1 upon acidification (A-1 & A-2 tanks). The average pH of the treated effluent was 6.5 (S-5 tank) and increase in pH level was due to proper neutralization of effluent with the agricultural lime.

Regarding the BOD level, the average BOD level of the fresh effluent was 8,338 mg/L (8,338 ppm) and it was reduced to 1,544 mg/L (S-5 tank) upon treatment (the percent BOD reduction was 81.5%). The average total suspended solids content in the fresh effluent was 4.65 g/L and upon treatment, it was reduced to 2.5 g/L (the percent TSS reduction was 46%). The data on total suspended solids content indicated that the TSS content was very low in effluent samples from A-1, A-2 and neutralization tank (0.74, 0.72 & 0.84 g/L, respectively) and then increased to 2.5 g/L (S-5). This may be due to addition of natural elements/minerals present in the filtering materials (gravel & sand) when the effluent pass through these filtering materials.

These data indicated that the new method viz., Acidification-Neutralization-Sedimentation-cum-Filtration (ANSF) reduced the BOD level only to the extent of 81.5% (initial BOD- 8,338 mg/L; final BOD - 1,544 mg/L). Further, it was observed that the effluent in the sedimentation tanks was found to be dark in colour. This is due to the fact that when the pH of the effluent increases from acidic to neutral range, the flavonoids (pigment) present in the effluent turns into blackish green. The treated effluent from S-5 tanks was lifted to the recycling tank for use in the pulping of fresh cherries.

In order to reduce the pollution load in the coffee effluent effectively, it is necessary to remove the pectin substances in the fresh effluent through acidification followed by proper neutralization.
by adding agricultural lime (in solution form) at the recommended quantity (5 g/L of effluent).

In conclusion, though the new method viz., Acidification-Neutralization-Sedimentation-cum-Filtration (ANSF) did not reduce the pollution load to the limits prescribed by Central Pollution Control Board (CPCB), this new method seems to be relatively simple as it does not require any chemical (or) biological inputs (excepting agricultural lime) for treating the coffee effluent.

Table 1. Standards prescribed for effluent resulting from wet/parchment coffee processing (as per the Gazette Notification No. 45 dated 24th January 2020 issued by the Ministry of Environment, Forest and Climate Change, New Delhi)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Parameters</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>pH</td>
<td>6.5 – 8.5</td>
</tr>
<tr>
<td>2.</td>
<td>BOD (3 days at 27°C)</td>
<td>Storage in lined lagoon: 1,000 mg/L (1,000 ppm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discharge on land for irrigation: 100 mg/L (100 ppm)</td>
</tr>
<tr>
<td>3.</td>
<td>Liner specifications</td>
<td>The non-permeable lining system shall be constructed by using well graded highly impervious clay or geo-synthetic liners such as geo-synthetic clay liners (GCL), high density polyethylene (HDPE) or a combination of both and shall achieve an \textit{in-situ} co-efficient of permeability of less than 1×10^{-7} cm/sec. The compacted clay liner must have a minimum thickness of 300 mm (or two compacted layers of 150 mm minimum thickness each). The finished lining must be tested to ensure that is meets the permeability criteria. The liner system specification and lagoon specification to be achieved in one year.</td>
</tr>
<tr>
<td>4.</td>
<td>Lagoon specifications</td>
<td>The effluent storage facilities/lagoons/solar evaporation ponds shall be located above high flood level mark of the nearby stream, rivulet, etc., with below mentioned free board and away from any water body/stream at a distance. Free Board - 60cm; Distance - 100 metre.</td>
</tr>
<tr>
<td>5.</td>
<td>Effluent disposal criteria</td>
<td>Raw or treated and/or diluted effluent shall not be discharged into surface water body or used for recharging ground water and any circumstances what-so-ever.</td>
</tr>
</tbody>
</table>

Table 2. Data on pollution parameters in effluent sample subjected to new treatment method (Acidification-Neutralization-Sedimentation-cum-Filtration -ANSF)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Sample Details</th>
<th>pH</th>
<th>BOD (mg/L)</th>
<th>TSS (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fresh effluent</td>
<td>4.78</td>
<td>8,338</td>
<td>4.65</td>
</tr>
<tr>
<td>2.</td>
<td>Acidification tank (A1)</td>
<td>4.03</td>
<td>2,271</td>
<td>0.74</td>
</tr>
<tr>
<td>3.</td>
<td>Acidification tank (A2)</td>
<td>4.10</td>
<td>1,708</td>
<td>0.72</td>
</tr>
<tr>
<td>4.</td>
<td>Neutralization tank (N)</td>
<td>5.27</td>
<td>1,461</td>
<td>0.84</td>
</tr>
<tr>
<td>5.</td>
<td>Settling tank (S1)</td>
<td>5.35</td>
<td>2,417</td>
<td>1.37</td>
</tr>
<tr>
<td>6.</td>
<td>Settling-cum-filtration tank (S2)</td>
<td>5.40</td>
<td>2,208</td>
<td>1.24</td>
</tr>
<tr>
<td>7.</td>
<td>Settling-cum-filtration tank (S3)</td>
<td>7.15</td>
<td>1,733</td>
<td>1.18</td>
</tr>
<tr>
<td>8.</td>
<td>Settling tank (S4)</td>
<td>5.98</td>
<td>1,835</td>
<td>2.00</td>
</tr>
<tr>
<td>9.</td>
<td>Storage tank (S5)</td>
<td>6.50</td>
<td>1,544</td>
<td>2.50</td>
</tr>
</tbody>
</table>

Values are average of 61 samplings analysed during the last three harvest seasons (2017-18, 2018-2019 and 2019-2020).

Reference:
The impact of climate change especially the variations in rain fall pattern both in terms of quantum and distribution is commonly experienced in all coffee growing areas. For the last three years, the coffee growing regions of Karnataka, Kerala and part of Tamil Nadu received unusual rains during monsoon season with erratic distribution patterns. This high quantum of rainfall in short periods leads to flooding of plantations, soil erosion and water logging in root zone causing wet feet condition. Thus, the soil saturation coupled with cool ambient temperature and high relative humidity provide ideal conditions for flare up of rot diseases such as stalk rot, black rot and leaf spot diseases causing defoliation and also the pre-mature fruit drop, affecting crop production to a great extent.

In general, the pre-mature fruit drop to an extent of 5 to 8% in arabica and about 10% in robusta, is commonly observed during monsoon season i.e. June–July months, which also coincides with berry development stage (90 to 120 days after flowering) due to soil saturation causing hormonal imbalance {reduction in cytokinins with high content of Abscisic acid (ABA)}. In addition, certain other factors such as reduction in carbohydrate content, nutrient deficiency, multiple blossoms (running blossom) resulting in formation of different sized berries and over bearing causing competition for carbohydrate reserves etc. also contribute for pre mature fruit drop. In addition to the usual extent of pre mature fruit drop, the flare ups of rot diseases and physiological disturbances due to unfavourable climatic conditions further increase the pre-mature drop in coffee. In the back drop of the deviations in weather parameters as a consequence of climate change, it becomes imperative for coffee growers to take up pre-emptive remedial measures and also to control the flare ups of fungal diseases, so that the crop losses could be minimized.
Remedial measures:

Systematic studies have revealed that physiological interventions by use of plant growth regulators, coupled with adoption of good agronomic practices and disease management reduces pre-mature fruit drop and defoliation and enhances cropping wood for subsequent year, resulting in increase in crop yield by 12–20%. The plant growth regulator such as Naphthalene acetic acid (α-NAA) a derivative of auxins found to reduce pre-mature berry drop in coffee besides increasing vegetative growth of the plants. Pre-monsoon foliar application of α-NAA found to improve the out turn ratio marginally in arabica coffee. Highly significant increase in dry matter accumulation, bean dry matter content was also observed due to application of α-NAA. Hence, α-NAA is recommended to control premature fruit drop @ 50 ml/barrel in both arabica and robusta coffee. α-NAA is compatible with prophylactic fungicides like Bordeaux mixture and systemic fungicides like Carbendazim.

Fungal diseases that contribute for pre-mature fruit drop

Apart from the physiological factors, the following three important diseases caused by fungal pathogens are associated with pre-mature fruit drop in both arabica and robusta. Hence, it is important for the planters to be aware of the pre-disposing factors for development of these diseases, symptoms for precise identification in initial stage itself and damage caused by these diseases. This knowledge would enable the planters to take up appropriate control measures on time and to minimize the crop losses.

1. Black rot disease

Black rot disease in coffee is caused by the fungus Koleroga noxia Donk. and is considered to be the second important disease of coffee next to leaf rust. The pathogen attacks both Arabica and Robusta, the commercially cultivated types of coffee. It is an endemic disease, mostly found in those areas which come under the influence of South-West monsoon which receives annual rainfall above 80 inches. This disease is generally noticed in the valley areas of the plantations where hanging mist prevails and reported from almost all coffee growing regions of Karnataka, Kerala and Tamil Nadu that comes under the influence of South-West monsoon.

The Koleroga fungus infects leaves, developing berries and tender shoots. The most striking symptom is the blackening and rotting of the infected leaves, developing berries and young twigs. That’s why it is popularly known as Black rot. On advanced stage of infection, the affected leaves get detached from branches and hang down by means of slimy fungal strands (Fig.1). On green berries the characteristic blackening starts from one side and spreads gradually in a narrow band (Fig.2). Close examination reveals the presence of characteristic white mycelial strands running along the twig, petioles and spreading mostly on the lower surface of the leaves (Fig.3). Affected leaves and berries show a white web consisting of closely interwoven mycelia when surface moisture is drained. Defoliation and berry drop from the infected branches occur in advanced stage of disease development.

Fig. 1. Severely infected leaves hanging on branches by means of slimy mycelial strands
2. Stalk rot of berries and leaves

Stalk rot is another important disease observed during monsoon both on arabica and robusta coffee. The disease is caused by the fungus *Colletotrichum gloeosporioides*. The fungus develops as a white cottony mass at the stalk region causing disintegration of tissues leading to pre-mature drop of developing berries.

Control measures

- As the disease incidence is noticed during rainy season, spray systemic fungicide carbendazim 50 WP @ 200 g in 200 litres of water along with any one of the wetting agent, during the clear break in monsoon.
- Recent field trials indicated that the systemic fungicides, tebuconazole 25.9 EC @ 200 ml and propiconazole 25 EC @ 200 ml in 200 litres of water are also effective in control of the black rot disease.
- Before taking up the spray, remove the infected branches and leaves and dispose it off in order to prevent further spread of inoculums.

The fungus develops at the stalk region of developing berries and leaves causing drop of infected leaves as well as berries due to necrosis and decay of the stalk portion (Fig. 4). Generally, the rotting stalk remains at the nodes of the infected branch while berries drop down (Fig. 5). Infected tender twigs die from the site.
of infection. Low temperature, high relative humidity, surface wetness of plants, excess soil moisture favours the disease development.

Control Measures

- Provide good drainage system and clean the cradle pits before monsoon to remove stagnation of water around root zone.
- The mulch below the canopy should be removed and heaped in centre of four plants to provide better aeration.
- Apply balanced nutrients (NPK) to the plants especially the plants that yielded high crop in the previous year.
- Spray carbendazim 50 WP @ 200 g with Planofix @ 50 ml/ in 200 litres of water along with the wetting agent during clear break of monsoon in endemic areas
- Recent field trials indicated that the systemic fungicides, tebuconazole 25.9 EC @ 200 ml and propiconazole 25 EC @ 200 ml in 200 litres of water are also effective in control of the stalk rot disease.

3. Stem necrosis, leaf spot and berry rot disease

The fungus *Myrothecium roridum* infects the seedlings both in nursery and field conditions. In the nursery, the pathogen infects both stem and leaves of coffee seedlings. The infected seedling shows constriction of stem that occurs at any place above the soil. Sometimes 2-3 such lesions are noticed on the same stem. Infected region at later stage show cushion shaped black fruiting bodies surrounded by white mycelia of the pathogen. Affected seedlings gradually start wilting and die.

In the nursery and field, the infected leaves initially show water-soaked circular necrotic spots, later spreads gradually to more areas and changes to alternate whitish brown and black colour concentric rings. Black fruiting bodies are noticed on both lower and upper surface of the affected leaf all along the concentric rings of the spot (Fig.6). Occasionally the centre of the lesion breaks irregularly.

In the field, on the developing berries, initially small, circular, slightly sunken, black coloured, necrotic lesions appear near the stalk portion of the berries. As the infection progresses the necrotic lesion expand further and spreads towards the distal end of the berries and finally cover the entire berries. At later stage, black coloured fruiting bodies will be observed on the lesion (Fig.7).

![Fig.6. Necrotic spots with concentric rings on infected leaf](image)

![Fig.7. Berry rot with fruiting bodies of Myrothecium roridum](image)

Control measures

- Remove and destroy the affected coffee seedlings from the germination beds and in the poly bags at regular intervals to prevent spread of the disease.
• Some of the weed plants growing in and around the coffee plantations are known to harbour the pathogen and gradually infect coffee plants. In the plantations where brush cutters are used for weed management during monsoon season, the disease spreads to coffee through weed splashes.

• For control of the disease, spray of propiconazole 25 EC @ 0.8 ml/litre of water and mancozeb 75% WP @ 2g/litre of water alternatively once in 20 days from May to September covering both the upper and lower surface of leaves and infected berries. Thus, the pre-mature fruit drop during monsoon period is generally considered as a Physio-Pathological complex as a consequence of wet feet/soil saturation coupled with fungal attacks. Hence, planters are advised to adopt the following pre-emptive measures during pre-monsoon itself which help in minimizing the disease flare ups even in the adverse climatic conditions and unusual rainfall occurs during monsoon.

1. Complete the handling, centering and desuckering of coffee bushes before the onset of monsoon, that provide aeration and facilitate light penetration.

2. In Black Rot prone endemic areas of Arabica and Robusta, spray 1% Bordeaux mixture along with Planofix @ 50ml /200 lit water to take care of fungal disease and to prevent pre-mature fruit drop.

3. Take up the lopping of temporary shade tree (Dadap) branches.

4. Clean the drainage channels and cradle pits to drain out excess water.

5. Heap the mulch/ leaf litter to the centre of four plants.

In general, by adoption of the above pre-emptive measures during pre-monsoon season, especially in the endemic areas where rot diseases occur recurrently every year, the pre-mature fruit drop due to physiological and pathological issues could be minimized.

Rotary Dryer

Can be used for both Cherry and Parchment Coffee. Capacity Range: 1,000 ltrs. to 16,000 ltrs., per batch. Heat source can be Wood or Diesel. Optional: Silo and Elevator.
There are many ways to use coffee in hair care. Coffee contains flavonoids that are antioxidants. They remove the dullness and promote hair regeneration. As such, a coffee rinse will prove beneficial for people who are looking to get rid of dry, dull and brittle hair.

Additionally, coffee will also come handy if you are looking to hide the greys and get a darker hair color. It is believed that stronger the coffee, the better is the result.

Preparing the coffee rinse
You need cold brewed coffee depending upon the length of your hair. Pour it into a spray bottle. Next, wash and condition your hair and then apply the brewed coffee on the wet strands. Also massage it into your scalp. Leave for 20 minutes, then rinse with cold or lukewarm water.

Precautions
Wait for the brew to cool down before using it.

How beneficial is coffee?
While there isn't a lot of research available to explain it, the ones that are, suggest that the caffeine in coffee improves the texture of the hair. It restores hair growth that affects both men and women nowadays, notwithstanding age. A study conducted in 2007 found that caffeine helped with longer, wider hair roots in men. In women, it led to growth-promoting effects in the follicles. Known to be a stimulant, caffeine also helps with the blood circulation, resulting in faster hair growth with stronger and thicker texture.

Some coffee for the hair, please
(Rinsing with a cold brew may actually work wonders for your hair)

Source : The Indian Express, New Delhi

The caffeine in coffee improves the texture of the hair.
Here’s how coffee is good for digestion, other digestive disorders

A new report reviews the latest research into coffee’s effect on digestion, and indicates a potential protective effect against gallstones and gallstone disease, and pancreatitis.

A cup of coffee is an amazing beverage and a great companion but it also serves various other purposes including several health benefits. Coffee isn’t just a drink. It’s a blend of science, an art, a culture and passion for many coffee lovers. Once considered a drink only for society’s elite, coffee today is a favourite for many. The best thing about the brewed beverage is that there is no one way of preparing it. It can be hot, cold, viscous, sloppy, bitter, sweet (read; Dalgona coffee, the lockdown drink), it can be prepared suited to the tastebuds of the one drinking it.

Speaking of health benefits, coffee is known to be helpful in reducing risk of Type-II diabetes, cardiovascular disease and also Parkinson’s disease according to some studies.

A new report reviews the latest research into coffee’s effect on digestion, and indicates a potential protective effect against gallstones and gallstone disease, and pancreatitis. The report also highlights other beneficial effects that coffee consumption may have on the process of digestion, including supporting gut microflora and promoting gut motility.

The report from the Institute for Scientific Information on Coffee (ISIC), is entitled ‘Coffee and its effect on digestion.’

The report was authored by Professor Carlo La Vecchia, at the Department of Clinical Sciences and Community Health, University of Milan, Italy, who commented: “The effect of coffee on digestion is an evolving area of research. Data indicates benefits against common digestive complaints such as constipation, as well as a potential reduction in the risk of more serious conditions like chronic liver diseases, from non-alcoholic fatty liver disease (NAFLD), gallstones and related pancreatitis”.

Gallstone disease is a common digestive disorder, caused by the accumulation of gallstones in the gallbladder or bile duct, which affects approximately 10-15% of the adult population. While the mechanism by which coffee may protect against gallstone disease is not yet known, it has been observed that the risk for the condition declines with increasing daily consumption of coffee. Caffeine is thought to play a role in these associations, as the same effect is not observed with decaffeinated coffee.

A common question among consumers and focus area for research is whether coffee is associated with heartburn or gastro-oesophageal reflux disease (GORD). Heartburn is a mild form of acid reflux that can affect most people on occasion, while GORD is a chronic and severe acid reflux condition that affects up to one in five adults, and is characterised by frequent heartburn, regurgitation of food or liquid, and difficulty in
swallowing. While a small number of studies have suggested an association between coffee drinking and GORD, the majority of studies reviewed suggest that coffee is not a major trigger of these conditions.

The report also reviewed a growing area of health and nutrition research, namely: the effect of coffee on the gut microflora (microorganism populations). Recent studies suggest that populations of the beneficial gut bacteria Bifidobacterium spp., increase after drinking coffee. It is thought that the dietary fibre and polyphenols found in coffee, support the healthy growth of microflora populations.

Additional research findings highlighted in the report include:
* Coffee can stimulate gut motility.
* Coffee consumption is thought to stimulate digestion by encouraging the release of gastric acid, bile and pancreatic secretions.

Coffee is already one of the most widely researched components of the diet, and its effect on digestion remains a growing area of research. While this report highlights a number of the more interesting findings that have emerged in recent years, it also provides insight into areas where further research would be beneficial, to better understand the mechanisms behind some of the beneficial effects observed.

COFFEE FILTERS FOR SALE

Coffee Board has designed superior quality 304 food grade stainless steel Coffee filters. These filters are available for sale in 2 Cups & 4 Cups capacity at India Coffee Depot outlets of Coffee Board.

Available at:
India Coffee Depot, Coffee Board,
No.1, Dr. B.R. Ambedkar Veedhi, Bengaluru - 560 001.

Selling price:
2 Cups capacity: Rs. 900 4 Cups capacity: Rs. 1000
India on its way to being the next ‘big thing’ in specialty Coffee World: Sherri Johns

Source: The Indian Express, New Delhi

"I believe South India was always known for its coffee. In that sense, coffee isn't new to India. But the rise of the cafe-culture made coffee trendy and exciting."

Sherri Johns isn’t sure if coffee found her or vice-versa, but she fell in love with the beverage many moons ago and the affair has only grown stronger over the years. Ask her the hallmark of a good coffee and the head judge and mentor, Araku Coffee, a luxury coffee brand, immediately remarks, “One that tastes as good as it smells; is neither instant nor contains chicory”. In an email interaction with indianexpress.com, the coffee specialist talks about India’s coffee culture, flavoured coffee concoctions and her most memorable cup.

Excerpts:

How and when did your love affair with coffee begin?

As a child, my mom brewed fresh percolator coffee for every meal. I loved the smell of freshly brewed coffee and that’s where it all began. When I started university in San Francisco and lived on my own, I would frequent the Italian cafes in North Beach to enjoy a cappuccino. I brewed coffee for friends in French presses, landed a job as a barista (before the term “barista” was popular) and truly “fell in love”. Without hesitation, I am not sure if I found coffee or coffee found me but it has been a love affair ever since.

India is usually identified as a *chai* drinking country, but this is being slowly taken over by coffee as the choice of beverage in some urban centres. What, according to you, may have brought about this shift?

I believe South India was always known for its coffee. In that sense, coffee isn't new to India. But the rise of the cafe-culture made coffee trendy and exciting. India has a fast-growing middle class which has more leisure time and more disposable income and the fact that in India it is now possible to grow amazing coffee is a bonus! Local cafes are a place to be and be seen. Good quality coffee is now being appreciated by those with a discerning palate.

There are various coffee shops / outlets mushrooming in the country. Do you think they do justice to the brew?

If they are serving high-quality coffee and consistent service to match, there is a place for all. Customers will find their favourites. It all
comes down to what you offer. At our upcoming experiential cafe in Bangalore, we are trying to create a coffee experience that’s unparalleled and champions coffee.

How would you describe India’s coffee culture?

It’s an exciting time for coffee in India. It’s growing and lively. It’s an incredible opportunity for a country which has the potential to grow amazing coffee. This is a reason to celebrate with a sense of national pride. At the Gems of Araku competition this year, our coffee was rated as high as 95/100 by a credible international jury and some judges even went on to compare it with coffee from Panama. It was incredible to witness how India is on its way to being the next “big thing” in the specialty coffee world.

What is the hallmark of a good cup of coffee?

Short answer: One which tastes as good as it smells, does not need cream or sugar to mask coffee’s natural sweetness and has a lingering pleasant taste. NOT instant and NOT with chicory.

Longer answer: Freshly roasted (not over-roasted to mask coffee’s natural flavour nuances), freshly ground just before brewing, brewed with a good ratio of filtered clear water to coffee (1:15), served in preheated cups and shared with friends.

There are a lot of coffee varieties available in the market — ranging from pumpkin latte, unicorn latte to turmeric latte. What is your take on these innovations?

Frappuccino started it all by marketing to early teens and growing a generation of young coffee drinkers who enjoyed mildly sweet flavoured coffee concoctions. I’m not complaining, the teens grow up to drink cappuccinos perhaps. Or if their penchant is a unicorn latte, well, let them enjoy it brewed with a high-quality coffee at least. Black coffee is not for everyone. This key here is coffee quality.

What is your secret mantra to brewing the perfect cup of coffee?

Each day for me begins with a cup of coffee. I like to keep things simple, just fresh roasted coffee which I grind just before brewing. I use fresh filtered water, heat it at 195 F and follow simple steps for brewing. Some days I use a french press, on others, a pour-over Chemex. Brewing and enjoying delicious coffee is not difficult, it is almost therapeutic.

Coffee has undergone a lot of makeovers over the years — perhaps to suit the evolving taste buds. What is your take on the same as a coffee expert?

People like to talk about waves, while I like to call them advancements in coffee. Coffee drinkers in markets across the world continue to become more sophisticated with time as new developments fuel the coffee world too. It is a journey of discovery. New trends like Turmeric Latte may hit the market and be the “new thing” for a while, but on the farm level, quality and processing is leading the change.

Where have you had the best coffee so far and what according to you makes it the best on your list?

Let’s rephrase it to a most “memorable cup”. In my 40+ professional years in coffee, I have enjoyed a few. Of late, I will say Araku’s Micro Climate, freshly brewed in a french press shared with friends on an outdoor deck.

If there is one misconception or one thing you would like to tell Indians about coffee, what would that be?

That all coffee does not taste the same and that high-quality coffee is neither instant nor contains chicory. India has amazing food with complexity and multiple dimensions. Indian coffee has that as well. Try it at cafes which have professionally trained baristas, and those that do not over roast coffee. Enjoy the journey of discovering coffee like never before.
New Delhi: Eight years after entering India, Starbucks Coffee Co. is rolling out its first drive-through outlet in India on Friday (10.07.2020).

As part of its post-Covid-19 strategy, the Tata Starbucks joint venture plans to open about a dozen drive-through outlets in India in a year, according to two people familiar with the company’s plans.

“As we ride out of this crisis on our way back to normality, the value of social distancing and hygiene are going to see an increasing importance in our lives,” said Navin Gurnaney CEO of Tata Starbucks, a 50:50 JV between the Tata Group and the US beverage giant. “The new store fits perfectly with our norms of social distancing and encourages people to engage with the Starbucks brand in a safe way.”

As consumers stay away from eating out amid fears of spiralling corona virus cases in India, quick-service-restaurants such as McDonald’s, KFC and Burger King are ramping up and scouting for drive-through locations in the country, Industry officials said.

India currently has only about 100 drive-through points, even decades after the fast-food concept took root in the country. Industry executives said that is going to change, propelled mainly by the pandemic, with the number of such outlets set to double to more than 200 in a year. Companies are even trying to convert various existing restaurants into drive-through outlets.

The McDonald’s franchisee for north and east India, which operates 120 of its 150 outlets in India, operates 29 drive-through restaurants, now with physical barriers at the drive-through windows and contact less experience.

“At a McDonald’s drive-through, a customer spends around 60-90 seconds between order placement and receiving their order at the next window. This allows our restaurants to serve more customers faster,” a spokesperson for McDonald’s North and East said.

Yum! Brands-owned KFC India has introduced kerb-side delivery, where food is handed over to customers in their cars or two-wheelers within the vicinity of the restaurant. KFC offers this service at 150 of its 350 restaurants in the country.
“We plan to extend it to other restaurants over the next couple of months” said KFC chief marketing officer Moksh Chopra. He said the initial consumer response been encouraging, with a “steady increase” in sales even though the concept is newer in India. Pizza Hut also liaise intensified kerb-side deliveries at many outlets.

A Burger King India spokesperson said the chain operates multiple drive-through restaurants in the country. “Drive-through offers high level of convenience to our guests and are an integral part of our future expansion plans. In the context of Covid-19, with the easing of the lockdown, we have seen good traction across our drive through restaurants,” he said.

Can coffee growers deploy MGNREGA workers?
Labour alone accounts for up to 60-70% of the total cost of production

Source : The Hindu, New Delhi

Professional services firm Ernst & Young LLP has suggested coffee growers avail the services of MGNREGA workers to solve the issue of labour shortage and rein in the consequent high production cost.

If a draft report prepared by the firm on the strategic road map for the Indian coffee sector, the firm suggested the use of MGNREGA labour up to the yielding stage. Currently, only trenching activities inside coffee plantations are covered under MGNREGA.

The sector’s labour woes reached a boiling point in March after a large population of immigrant labourers returned to their home towns.

Ernst & Young was commissioned by the Coffee Board to undertake a study on behalf of the United Planters’ Association of Southern India and several coffee growers’ associations.

The draft recommended that the Coffee Board formulate cost norms similar to the convergence guidelines for rubber. It also suggested that small farmers, who hold up to 10 hectare of land, should be given access to MGNREGA labour pool.

Clarity needed

Commenting on the recommendations, Coffee Board Chairman Shri M.S. Boje Gowda said, “A proposal to make MGNREGA labour available in the coffee sector is a positive thing. However, we have to decide what kind of work can be allotted to these labourers, because on a coffee plantation certain activities can be done only by skilled workers.”

Echoing similar sentiments, UPASI president ALRM Nagappan said linking MGNREGA scheme with the coffee sector was a constructive idea though a detailed scheme was required. Only then, the coffee growers would be able to take advantage of the scheme.
JULY

South-West Monsoon Area

1. Handling, centring and de-suckering. In marginal areas, centring should be minimised in Arabica to avoid exposure of main stem so as to minimise the risk of stem borer attack.
2. Black Rot: In black rot affected plants, removal and destruction of black rot affected twigs, leaves etc. should be done followed by drenching spray with Bavistin 50 WP @ 0.03% (Carbendazim 120g per barrel) during the break in rains.
4. Planting including supply planting- weather permitting.
5. Removal and burning of shot-hole borer infested twigs.

North-East Monsoon Areas:

1. Dadap lopping.
2. Planting dadap stakes, permanent shade seedlings and Coffee depending on weather conditions.
3. Rest as above.

AUGUST

South-West Monsoon Areas:

1. Weeding to be continued.
2. Handling, centring and de-suckering to be continued. In marginal areas, centring should be minimised in Arabica to avoid exposure of main stem so as to minimise the risk of stem borer attack.
3. Planting, if weather permits.
5. Control measures against cockchafer, if necessary.
6. Removal and burning of shot-hole borer infested twigs.
7. Black Rot: In black rot affected plants, removal and destruction of black rot affected twigs, leaves etc. should be done followed by drenching spray with Bavistin 50 WP @ 0.03% (Carbendazim 120g per barrel) during the break in rains.
8. Mid monsoon manuring (during break in the monsoon)
9. Berry Borer: If berry borer is noticed, spot sprays with Beauveria bassiana or Chlorpyriphos 20EC may be taken up.

North-East Monsoon Areas:

Pre-monsoon spraying with 0.5% Bordeaux mixture against leaf rust. Rest as above.

SEPTEMBER

South-West Monsoon Areas:

1. Planting coffee and shade trees
2. Stem Borer: Tracing & burning of Stem borer affected plants to be completed before end of March in the entire estate without fail. If uprooted stumps are to be retained for further use, immerse them in water for about 10 days to kill all pest stages.
3. Control measures against cockchafer, if necessary
4. Control measures against hairy caterpillars
5. Control measures against green scale, if necessary
6. Leaf Rust: Post-monsoon spray against leaf rust in Arabica with systemic fungicides like Triadimefon @ 0.02% a.i. (Bayleton 25 WP @ 160g in 200 litres of water) or Hexaconazole @ 0.01% (Contaf 5% EC @ 400 ml in 200 litres of water). Tolerant Varieties like Chandragiri, Sln.6, Sln.5B can be sprayed with 0.5% Bordeaux mixture
7. Nursery: Spraying nursery seedlings with dithane M-45 or Ferbam at 0.4% or Foltat at 0.3% against brown eye-spot disease
8. Post monsoon manuring
9. Regulation of dadap shade
10. Shot-hole borer tracing, removal and burning of infested twigs
11. Berry Borer: Control measures against berry borer. Harvesting of borer infested berries, if present and treat them with hot water. Spot spray with Chlorpyriphos especially in the case of Robusta.

North-East Monsoon Areas:

Same as above.
In this column, the extracted information from June 2020 Coffee Market Reports of ICO on global production, global prices, world consumption and global exports as well as domestic prices and exports are covered.

Global Production and Consumption

Global coffee production in 2019/20 is estimated at 167.91 million bags, which could exceed consumption by 1.85 to 3.42 million bags, depending on impact of Covid-19. In 2019/20, world coffee consumption is estimated at 166.06 million bags, 0.5% higher than in 2018/19.

World Supply/Demand Balance (in thousand 60-kg bags)

<table>
<thead>
<tr>
<th>Coffee Year</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019*</th>
<th>% change 2018/19</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTION</td>
<td>154823</td>
<td>158450</td>
<td>162657</td>
<td>171102</td>
<td>167906</td>
<td>-1.90%</td>
</tr>
<tr>
<td>Arabicas</td>
<td>90982</td>
<td>100611</td>
<td>97229</td>
<td>100653</td>
<td>95271</td>
<td>-5.30%</td>
</tr>
<tr>
<td>Robustas</td>
<td>63842</td>
<td>57840</td>
<td>65428</td>
<td>70449</td>
<td>72634</td>
<td>3.10%</td>
</tr>
<tr>
<td>Africa</td>
<td>15583</td>
<td>16555</td>
<td>17299</td>
<td>18772</td>
<td>18536</td>
<td>-1.36%</td>
</tr>
<tr>
<td>Asia & Oceania</td>
<td>49484</td>
<td>45652</td>
<td>48458</td>
<td>48394</td>
<td>50522</td>
<td>4.40%</td>
</tr>
<tr>
<td>Mexico & Central America</td>
<td>17106</td>
<td>20322</td>
<td>21725</td>
<td>21749</td>
<td>20833</td>
<td>-4.20%</td>
</tr>
<tr>
<td>South America</td>
<td>72651</td>
<td>75921</td>
<td>75176</td>
<td>82187</td>
<td>78015</td>
<td>-5.10%</td>
</tr>
<tr>
<td>CONSUMPTION</td>
<td>155491</td>
<td>158125</td>
<td>159913</td>
<td>163269</td>
<td>166058</td>
<td>0.50%</td>
</tr>
<tr>
<td>Exporting countries</td>
<td>47548</td>
<td>48488</td>
<td>49793</td>
<td>50374</td>
<td>50288</td>
<td>-0.20%</td>
</tr>
<tr>
<td>Importing countries (Coffee Years)</td>
<td>107943</td>
<td>109637</td>
<td>110120</td>
<td>114895</td>
<td>115770</td>
<td>0.80%</td>
</tr>
<tr>
<td>Africa</td>
<td>10951</td>
<td>10843</td>
<td>9808</td>
<td>9890</td>
<td>9970</td>
<td>0.80%</td>
</tr>
<tr>
<td>Asia & Oceania</td>
<td>32863</td>
<td>34395</td>
<td>34832</td>
<td>35595</td>
<td>35959</td>
<td>1.00%</td>
</tr>
<tr>
<td>Mexico & Central America</td>
<td>5295</td>
<td>5173</td>
<td>5252</td>
<td>5322</td>
<td>5327</td>
<td>0.10%</td>
</tr>
<tr>
<td>Europe</td>
<td>52147</td>
<td>52045</td>
<td>53158</td>
<td>55741</td>
<td>55930</td>
<td>0.30%</td>
</tr>
<tr>
<td>North America</td>
<td>28934</td>
<td>29559</td>
<td>29941</td>
<td>31644</td>
<td>31848</td>
<td>0.60%</td>
</tr>
<tr>
<td>South America</td>
<td>25299</td>
<td>26111</td>
<td>26922</td>
<td>27077</td>
<td>27024</td>
<td>-0.20%</td>
</tr>
<tr>
<td>BALANCE</td>
<td>-668</td>
<td>325</td>
<td>2744</td>
<td>5832</td>
<td>1848</td>
<td></td>
</tr>
</tbody>
</table>

Prices

Domestic Market Prices: ICTA (Bangalore) Weekly Auction Prices (Rs./kg)

<table>
<thead>
<tr>
<th>Month/ Week</th>
<th>June’20</th>
<th>June’19</th>
<th>June’20</th>
<th>June’19</th>
<th>June’20</th>
<th>June’19</th>
<th>June’20</th>
<th>June’19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant ‘A’</td>
<td>295.00</td>
<td>---</td>
<td>295.00</td>
<td>---</td>
<td>295.00</td>
<td>219.00</td>
<td>295.00</td>
<td>225.16</td>
</tr>
<tr>
<td>Arb.Chy. ‘AB’</td>
<td>---</td>
<td>142.16</td>
<td>---</td>
<td>148.00</td>
<td>---</td>
<td>147.00</td>
<td>---</td>
<td>144.30</td>
</tr>
<tr>
<td>Rob.Pmt. ‘AB’</td>
<td>---</td>
<td>200.00</td>
<td>160.00</td>
<td>202.00</td>
<td>---</td>
<td>210.00</td>
<td>---</td>
<td>208.33</td>
</tr>
<tr>
<td>Rob.Chy. ‘AB’</td>
<td>---</td>
<td>---</td>
<td>139.00</td>
<td>---</td>
<td>140.56</td>
<td>---</td>
<td>140.00</td>
<td>---</td>
</tr>
</tbody>
</table>
In June 2020, the ICO composite indicator averaged $99.05 US cents/lb, 5.2% lower than in May. This is the first time since October 2019 that the ICO composite indicator has fallen below 100 cents/lb and the third consecutive month of decrease. The daily price of the ICO composite indicator spent more than half of the month below 100 US cents/lb, ranging between a low of $96.79 US cents/lb on 25 June and $101.27 US cents/lb on 8 June. Despite strong exports in the first half of the coffee year, the ongoing bearish outlook for demand, as global economic growth was further revised downwards in June by the International Monetary Fund, and expectations for a large harvest in Brazil put downward pressure on prices in June.

All Arabica group indicators trended downwards in June 2020, but prices for Robusta averaged $64.62 US cents/lb, 0.1% higher than in May 2020. Prices for Brazilian Naturals fell by 9% to $92.56 US cents/lb, as harvesting of Brazil’s on-year Arabica crop is well underway with minimal impact so far from Covid-19. Additionally, shipments from the second largest exporter of Brazilian Naturals, Ethiopia, have remained strong in the last five months, signalling ample supply. Colombian Milds fell by 5% to $147.16 US cents/lb, and Other Milds by 5.6% to $141.52 US cents/lb. As a result, the differential between Colombian Milds and Other Milds increased by 10.2% to 5.64 US cents/lb.

The New York Arabica futures market fell by 7.5% to an average of $99.50 US cents/lb in June 2020 while the London Robusta futures market rose by 0.2% to $54.77 US cents/lb. As a result, the spread between Arabica and Robusta coffees, as measured on the New York and London futures markets, fell to $44.73 US cents/lb, which is 15.4% lower than in May. Certified Arabica stocks decreased by 5.6% month-on-month to 1.9 million bags in May 2020, which is the fifth consecutive month of decline. Certified Robusta stocks decreased for the fourth consecutive month, reaching 2.02 million bags in June, 7.3% lower than in May.

Exports:

Global shipments in May 2020 fell by 14.6% to 10.49 million bags, as exports from all coffee groups decreased. However, this volume is the third highest on record for the month of May and follows unusually high shipments last year. Exports of Arabica decreased by 19.7% to 6.43 million bags. Shipments of Colombian Milds fell by 13.4% to 999,000 bags. This is due largely to a decline of 13.1% to 894,000 bags for exports from Colombia. Compared with May 2019, shipments of Other Milds decreased by 14.4% to 2.61 million as volumes fell for the five largest exporters of this type of coffee, notably Honduras where exports declined by 20.9% to 730,000 bags.

Exports of Brazilian Naturals decreased by 25.7% to 2.82 million bags. Brazil’s green Arabica shipments fell by 27.3% to 2.2 million bags, reflecting the biennial downturn of its 2019/20 crop. However, Ethiopia’s exports rose...
by 7.8% to 381,000 bags.

Exports in the first eight months of coffee year 2019/20 reached 83.8 million bags, down by 4.7% from the 87.96 million bags registered in the same period in 2018/19. In October 2019 to May 2020, exports of Colombian Milds fell by 7.9% to 9.33 million bags, Other Milds by 7.4% to 16.58 million bags, and Brazilian Naturals by 9.6% to 26.23 million bags. In contrast, shipments of Robusta increased by 2.5% to 31.67 million bags in the first eight months of coffee year 2019/20.

Imports by ICO importing Members and the United States, which on average account for around 75% of global imports, increased by 5.1% to 11.76 million bags in March 2020 of which 8.25 million bags originated from exporting countries. In the first six months of coffee year 2019/20, imports by ICO importing Members and the United States decreased by 3.7% to 64.22 million bags. Imports by the EU in October 2019 to March 2020 fell by 2.9% to 41.6 million bags, and those of the United States decreased by 8.2% to 13.75 million bags. Imports by Japan declined by 8.3% to 3.6 million bags, Tunisia by 6.2% to 265,000 bags, and Norway by 0.5% to 363,000 bags. In contrast, imports by the Russian Federation grew by 8% to 2.99 million bags, while those of Switzerland increased by 7.8% to 1.65 million bags.

Brazil was the largest source of coffee imports by the European Union, accounting for 20% of its imports in October 2019 to March 2020. This was followed by Vietnam (13.8%), Colombia (3.9%), Honduras (3.8%) and Uganda (3.2%). Imports from Brazil and Vietnam decreased by 6.7% to 8.32 million bags and by 10.4% to 5.74 million bags, respectively. However, imports from Colombia grew by 0.3% to 1.63 million bags, from Honduras by 20.7% to 1.57 million bags and from Uganda by 7.6% to 1.35 million bags. Around 70% of the EU’s imports are green coffee, particularly for those originating from producing countries, while soluble coffee accounts for around 10% of its imports. In the first half of coffee year 2019/20, Brazil, India, and Vietnam were significant sources of soluble coffee, representing 5.4%, 4.7% and 3.5% of the EU’s total soluble imports, respectively.

Imports from Brazil and Colombia accounted for 53.6% of imports by the United States in the first six months of coffee year 2019/20. Vietnam represented 9.1%, Mexico 4.9% and Peru 4.1% of US imports. Imports from Brazil decreased by 2.7% to 4.21 million bags, from Colombia by 10.3% to 3.15 million bags, and from Vietnam by 18.5% to 1.25 million bags. Shipments from Mexico amounted to 672,000 bags, 21.5% lower than in October 2018 to March 2019, while shipments from Peru fell by 27.3% to 558,000 bags. The top five largest sources of imports of soluble coffee came from Brazil, Mexico, Colombia, India, and Spain, which accounted for 87.8% of the total. Among the five largest origins for roasted coffee, Canada, Italy, and Switzerland represented 71.8% while Mexico and Colombia represented 10.8% and 7.3%, respectively.

Similarly to the European Union and the United States, Brazil, Vietnam and Colombia were the main origins for Japan’s imports in the first half of coffee year 2019/20, accounting for 30.7%, 25.1%, and 15.3%, respectively. Ethiopia and Indonesia, representing 7% and 6.2% of Japan’s imports, were the next two largest suppliers. Imports from Brazil fell by 27.2% to 1.1 million bags and from Indonesia by 21.3% to 223,000 bags. However, imports from Vietnam grew by 12.9% to 904,000 bags, from Colombia by 14.4% to 551,000 bags, and from Ethiopia by 6.8% to 252,000 bags. Nearly 90% of Japan’s imports consist of green coffee, while soluble coffee accounts for around 9% of total imports. Brazil, Vietnam, and Colombia accounted for near 75% of total soluble imports. Brazil’s shipments of soluble coffee to Japan rose by 5.4% to 145,000 bags and Colombia by 20.5% to 28,000 bags while Vietnam’s fell by 14.7% to 68,000 bags.
Indian coffee exports (01.01.2020 to 30.06.2020) in MT

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Exports</th>
<th>Provisional exports</th>
<th>Provisional re-exports</th>
<th>Total provisional exports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Indian coffee</td>
<td>corresponding period last year</td>
<td>Provisional re-exports</td>
</tr>
<tr>
<td>1</td>
<td>Ar. Pmt.</td>
<td>21771</td>
<td>27351</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Ar.Chy.</td>
<td>8033</td>
<td>7228</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Rob.Pmt.</td>
<td>17228</td>
<td>23294</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Rob.Chy.</td>
<td>78606</td>
<td>95448</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Roasted Seeds</td>
<td>27</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>R&G</td>
<td>89</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Instant</td>
<td>6345</td>
<td>10788</td>
<td>43500</td>
</tr>
<tr>
<td>8</td>
<td>Total</td>
<td>132099</td>
<td>164237</td>
<td>43505</td>
</tr>
</tbody>
</table>

Indian Coffee | July 2020

जून 2020

वैश्विक उपयादन एवं उपभोग

वर्ष 2019/20 में वैश्विक कॉफी उपयादन 167.91 मिलियन बैंस का अनुमानित किया गया है, जो कोबिड -19 के प्रभाव से निर्भर कर उपभोग में 1.85 से 3.42 मिलियन बैंस तक की वृद्धि ला सकती है। वर्ष 2019/20 में, विश्व कॉफी के उपभोग 166.06 मिलियन बैंस तक अनुमानित किया गया है, जो 2018/19 की तुलना में 0.5% अधिक है।

वैश्विक आयात / मांग श्रेणी (हजारों में - 60 फिन.एन्नु. बैंस में)

<table>
<thead>
<tr>
<th>कॉफी वर्ष</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019 *</th>
<th>2018/19 में परिवर्तन का %</th>
</tr>
</thead>
<tbody>
<tr>
<td>उपयादन</td>
<td>154,823</td>
<td>158,450</td>
<td>162,657</td>
<td>171,102</td>
<td>167,906</td>
<td>-1.90%</td>
</tr>
<tr>
<td>अंडमान</td>
<td>90,982</td>
<td>100,611</td>
<td>97,229</td>
<td>100,653</td>
<td>95,271</td>
<td>-5.30%</td>
</tr>
<tr>
<td>रोडस्टा</td>
<td>63,842</td>
<td>57840</td>
<td>65,428</td>
<td>70,449</td>
<td>72634</td>
<td>3.10%</td>
</tr>
<tr>
<td>अफगान</td>
<td>15,583</td>
<td>16555</td>
<td>17,299</td>
<td>18,772</td>
<td>18536</td>
<td>-1.36%</td>
</tr>
<tr>
<td>एथियोपिया और ऊर्फ्रियाहिया</td>
<td>49,484</td>
<td>45652</td>
<td>48458</td>
<td>48,394</td>
<td>50,522</td>
<td>4.40%</td>
</tr>
<tr>
<td>मेक्सिको और मध्य अमेरिका</td>
<td>17,106</td>
<td>20,322</td>
<td>21,725</td>
<td>21,749</td>
<td>20,833</td>
<td>-4.20%</td>
</tr>
<tr>
<td>दक्षिण अमेरिका</td>
<td>72,651</td>
<td>75,921</td>
<td>75,176</td>
<td>82,187</td>
<td>78,015</td>
<td>-5.10%</td>
</tr>
<tr>
<td>उपभोग</td>
<td>155,491</td>
<td>158,125</td>
<td>159,913</td>
<td>165,269</td>
<td>166,058</td>
<td>0.50%</td>
</tr>
<tr>
<td>निर्यातक देश</td>
<td>47,548</td>
<td>48,488</td>
<td>49,793</td>
<td>50,374</td>
<td>50,288</td>
<td>-0.20%</td>
</tr>
<tr>
<td>आयातक देश (कॉफी वर्ष)</td>
<td>107,943</td>
<td>109,637</td>
<td>110,120</td>
<td>114,895</td>
<td>115,770</td>
<td>0.80%</td>
</tr>
<tr>
<td>अफ़गान</td>
<td>10,951</td>
<td>10,843</td>
<td>9,808</td>
<td>9,890</td>
<td>9,970</td>
<td>0.80%</td>
</tr>
<tr>
<td>एथियोपिया और ऊर्फ्रियाहिया</td>
<td>32,863</td>
<td>34,395</td>
<td>34,832</td>
<td>35,595</td>
<td>35,959</td>
<td>1.00%</td>
</tr>
<tr>
<td>मेक्सिको और मध्य अमेरिका</td>
<td>5,295</td>
<td>5,173</td>
<td>5,252</td>
<td>5,322</td>
<td>5,327</td>
<td>0.10%</td>
</tr>
<tr>
<td>यूरोप</td>
<td>52,147</td>
<td>52,045</td>
<td>53,158</td>
<td>55,741</td>
<td>55,930</td>
<td>0.30%</td>
</tr>
<tr>
<td>उत्तर अमेरिका</td>
<td>28,934</td>
<td>29,559</td>
<td>29,941</td>
<td>31,644</td>
<td>31,848</td>
<td>0.60%</td>
</tr>
<tr>
<td>दक्षिण अमेरिका</td>
<td>25,299</td>
<td>26,111</td>
<td>26,922</td>
<td>27,077</td>
<td>27,024</td>
<td>-0.20%</td>
</tr>
<tr>
<td>श्रेणी</td>
<td>-668</td>
<td>325</td>
<td>2744</td>
<td>5832</td>
<td>1848</td>
<td></td>
</tr>
</tbody>
</table>
अंतर्राष्ट्रीय स्पॉट मूल्य– अरेबिका (अन्य मुद्र) तथा रोबस्टा के आई सी ओ दैनिक समूह सूचकांक

जून 2020 में, आईसीओ समाधिक सूचकांक मई माह को तुलना में, 5.2% घटकर औसत 99.05 यूएस डॉलर/पॉइंड तक पहुँच गया। अक्टूबर 2019 के बाद ऐसा हुआ है कि आईसीओ समाधिक सूचकांक 100 सेंटस/पॉइंड से नीचे गिरा। यह गिरावट को लगातार तीन महीने के लिए आया। आईसीओ समाधिक सूचकांक का दैनिक मूल्य आधे से ज्यादा महीने तक 100 यूएस डॉलर/पॉइंड से नीचे रहा, जिससे गिरावट जून 25 और जून 8 को क्रमशः 96.79 यूएस डॉलर/पॉइंड तथा 101.27 यूएस सेंटस/पॉइंड से बेंच रहा। कोफी करों को छप्पानी में अर्थव्यवस्था और व्यापार के बाबत भी, अंतर्राष्ट्रीय मुद्रा कोष द्वारा जून में वैश्विक आर्थिक बृद्धि का फिर से निम्न संशोधित करने से तथा शासनों में अधिक फटल प्रभाव का प्रसारित करने से, मांग के प्रति मूल्य कम होने के कारण जून में मूल्यों पर दबाव पड़ गया।

जून 2020 में सभी अरेबिका समूह सूचकांक निम्न होने लगे लेकिन, रोबस्टा के मूल्य 64.62 यूएस सेंटस/पॉइंड का औसत पहुँचे, जो मई 2020 को तुलना में 0.1% अधिक है। ब्राजीलियन नेचुरल्स के मूल्य 9% घिरकर 92.56 यूएस सेंटस/पॉइंड हो गया। वैसे ही हो अब तक कोफी-19 के प्रभाव ब्राजील के अरेबिका की फसल पर कम पड़ने पर उसकी कटाई अच्छी तरह से चल रही है। इसके अतिरिक्त, ब्राजीलियन नेचुरल्स के दूसरे सबसे बड़ा निर्यातक इथोपिया में पर्यावरण आपूर्ति के साथ छिपते पांच महीनों से अपराजित नीरूम हो रहा है। कोफीवाई मुद्र 5% घट कर 147.16 यूएस सेंटस/पॉइंड और अन्य मुद्र 5.6% घट कर 141.52 यूएस सेंटस/पॉइंड रह गया। इसके फलस्वरूप, कोफीवाई मुद्र और अन्य मुद्र के बीच का अंतर 10.2% बढ़कर 5.64 अमेरिकी सेंटस/पॉइंड हो गया।

जून 2020 में, न्यूयॉर्क अरेबिका प्यूचर्स बाजार 7.5% गिरकर 99.50 यूएस सेंटस/पॉइंड के औसत पर पहुँच गया जबकि, लंदन रोबस्टा प्यूचर्स बाजार 0.2% बढ़कर 54.77 यूएस सेंटस/पॉइंड हो गया। इसके चार परिवर्तन के लिए, न्यूयॉर्क और लंदन प्यूचर्स बाजारों में ये मात्रा गया है, अरेबिका और रोबस्टा कोफी के बीच का प्रसार 44.73 यूएस सेंटस/पॉइंड तक पिए, जो मई महीने को तुलना में 15.4% कम है। मई 2020 में प्रमाणित अरेबिका स्टॉक में महीने-दर महीने 5.6% की गति होकर 1.9 मिलियन बैंग्स हो गया जो नियंत्रण गिरावट को जोड़ी महीनों में होने है। प्रमाणित रोबस्टा स्टॉक में चौथे महीनों में लगातार कमी आई, जो मई की तुलना में 7.3% कम होकर जून में 2.02 मिलियन बैंग्स तक पहुँच गया।

निर्धारत:
कोफी के सभी समूहों के निर्धार में कमी होने के कारण, मई 2020 में वैश्विक नीरूम 14.6% से गिरकर 10.49 मिलियन बैंग्स हो गया। यद्यपि, मई महीने में इस मात्रा का लोकसत्स सबसे बड़ा रिकॉर्ड है और पिछले साल जैसे अनियंत्रित उच्च नीरूम हो रहा है। अरेबिका के निर्धार 19.7% घटकर 6.43 मिलियन बैंग्स हो गया। कोफीवाई
युगां का नीतिभाषण 13.4% फिरबरक 999,000 बैंस हो गया। इसका प्रमुख कारण यह है कि कोलंबिया से निर्यात 13.1% घटकर 894,000 बैंस हो गया। वर्ष 2019 की तुलना में, अन्य मूँड़ों के नीतिभाषण में 14.4% के साथ 2.61 मिलियन बैंस की कमी आई, क्योंकि, इस प्रकार की कॉफ़ी के सबसे बड़े पांच निर्यातियों से कम निर्यात हुआ विवशक, हॉंडुरास का निर्यात 20.9% के साथ 7,30,000 बैंस तक कम हुआ।

ब्राजीलियन नैपुर्लस का निर्यात 25.7% घटकर 2.82 मिलियन बैंस हो गया। भारत के ग्रीष्म अर्थव्यवस्था का नीतिभाषण 27.3% के साथ 2.2 मिलियन बैंस तक गिरा जो इसकी 2019-20 को फलस्वरूप के द्वितीय प्लेनिंग गिरावट को प्रतिबिंबित करता है। यद्यपि, इथियोपिया का निर्यात 7.8% बढ़कर 381,000 बैंस हो गया।

कोरोना की 2019/20 के पहले आठ महीनों में निर्यात 83.8 मिलियन बैंस तक पहुंच गया, जो 2018/19 के इसी अवधि की तुलना में 4.7% की कमी के साथ 87.96 मिलियन बैंस था। अगस्त 2019 से मई 2020 तक, कोलंबिया मूँड़ों के निर्यात में 7.9% के लिए 9.33 मिलियन बैंस, अन्य मूँड़ों में 7.4% के लिए 16.58 मिलियन बैंस और ब्राजीलियन नैपुर्लस में 9.6% के लिए 26.23 मिलियन बैंस की गिरावट पाई गई। इसके विपरीत, कोरोना की 2019/20 के पहले आठ महीनों में रोकथाम का नीतिभाषण 2.5% बढ़कर 31.67 मिलियन बैंस हो गया।

आईसीओ के आयात कस्टडियां और यूरोपीय राज्य अमेरिका से निर्यात, जो बैंसक आयात के लगभग 75% औसत के हिसाब से, मार्च 2020 में 5.1% बढ़कर 11.76 मिलियन बैंस हो गया, जिसमें चार 8.25 मिलियन बैंस निर्यात करने देशों का है। कोरोना की 2019/20 के प्रथम छह महीनों में, आईसीओ के आयात कस्टडियां और संयुक्त राज्य अमेरिका द्वारा आयात 3.7% घटकर 64.22 मिलियन बैंस हो गया। अगस्त 2019 से मार्च 2020 तक यूरोपीय संघ द्वारा आयात 2.9% कम होकर 41.6 मिलियन बैंस हो गया और संयुक्त राज्य अमेरिका द्वारा आयात 8.2% घटकर 13.75 मिलियन बैंस हो गया। ज्यापन द्वारा आयात में 8.3% के लिए 3.6 मिलियन बैंस, टुर्की में 6.2% के लिए 265,000 बैंस और न्यूजील्यंड में 0.5% के लिए 363,000 बैंस की गिरावट देखी गई। इसके विपरीत, रूस में संघ द्वारा आयात 8% बढ़कर 2.99 मिलियन बैंस हो गया, जबकि स्टिक्सडर्लैंड में आयात 7.8% बढ़कर 1.65 मिलियन बैंस हो गया।

यूरोपीय संघ में ब्राजील काफ़ी के सबसे बड़े आयातक स्थान था, जिसका अनुमान 2019 से मार्च 2020 तक 20% आयात हुआ। इसके बाद, वित्तनाम (13.8%), कोलंबिया (3.9%), हॉंडुरास (3.8%) और
भारतीय कॉफ़ी निर्यात (01.01.2020 से 30.06.2020 तक) में टॉटल

<table>
<thead>
<tr>
<th>क्र. सं.</th>
<th>निर्यात</th>
<th>अन्तिम निर्यात</th>
<th>अन्तिम पुनः निर्यात</th>
<th>कुल अन्तिम निर्यात</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>भारतीय कॉफ़ी</td>
<td>विगत वर्ष की संगत अवधि</td>
<td>भारतीय कॉफ़ी</td>
</tr>
<tr>
<td>1</td>
<td>अर. पार्च</td>
<td>21771</td>
<td>27,351</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>अर. चेरी</td>
<td>8033</td>
<td>7228</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>रोब. पार्च</td>
<td>17228</td>
<td>23294</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>रोब. चेरी</td>
<td>78606</td>
<td>95448</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>भुने बीज</td>
<td>27</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>भुने व पिसे</td>
<td>89</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>एस्ट्रेंट</td>
<td>6345</td>
<td>10788</td>
<td>43,500</td>
</tr>
<tr>
<td>कुल</td>
<td></td>
<td>132,099</td>
<td>164,237</td>
<td>43,505</td>
</tr>
</tbody>
</table>

संकलन: डॉ. डी. आर. बाबू रेड्डी, उप निदेशक (बाज़ार अनुसंधान), कॉफ़ी बोर्ड, बंगलूरु

SUBSCRIPTION ORDER FORM

To:
The Editor-in-Chief,
Indian Coffee Journal
Coffee Board, P.B.No.5366, Bengaluru-560 001.

Sir, I wish to subscribe/renew the INDIAN COFFEE JOURNAL English edition for One year/Three years/Five years. I have remitted an amount of Rs. 200/- (for one year), Rs. 500/- (for three years). Rs. 800/- (for five years) through: NEFT/RTGS/Bank Transfer in favour of “Coffee Board IEBR Account No. 64015049024” (IFSC CODE: SBIN0040022, State Bank of India, Dr. Ambedkar Veedhi Branch, Bengaluru-560 001)

I am furnishing the following remittance details:
1. Unique Transaction Reference number (UTR)..
 (In case of payment made through NEFT/RTGS/Bank Transfer)
2. Date of Remittance...
3. Name of the Bank & Branch..
4. Challan Counter Foil copy (In case payment remitted in cash to “Coffee Board IEBR Account No. 64015049024”)
5. My present subscription No:..
6. Contact No. Mobile.. Land Line...

I request you to send the Indian Coffee Journal ENGLISH edition to the following address:
..Pin..
Date: ...Signature..

NOTE: 1. Please strike off whichever is not applicable 2. Please email scanned copy of this order form to: editor.indiancoffee1@gmail.com or send it by POST
Now Introducing Flat Bottom Pouches

With minimum run of 1000 pcs

www.swisspack.co.in

Now Introducing Stock Flat Bottom Pouches

Stock Stand up pouches Oxo-degradable Bags Made From Bio Plastics

Digital Printed Pouches

Do You Want Your Own Printed Bags?
Why invest time in building someone’s brand?
Print your own bags with 500 as minimum run.
Is your growing berry getting enough nutrients?

Benefits of using YaraVita BudBuilder in Coffee:
Phosphorus, Zinc, Boron and Magnesium have a specific influence on plant performance during flowering and early leaf establishment.

- Boron-influences berry setting.
- Zinc-influences flower quality, fertilisation, and leaf expansion.
- Magnesium-influences the maintenance of leaf quality throughout the season.
- Phosphorus-Helps in strong root development, ATP formation.

For further information, please contact Kartik Manjunath V - 09980513375

YaraVita
Bud Builder™

COFFEE BOARD
Ministry of Commerce & Industry, Government of India, I, Dr. B. R. Ambedkar Veedhi, Bengaluru - 560 001, Karnataka, India
Ph: 91-80-2226 6991 - 994, Fax: 91-80-2225 5557, Website: www.indiacoffee.org
Registered with Registrar of News Paper of India under Registration No. 1337 957 “Registered” KA/BGGOP/2533/09-11